Branch Transition Rate: A New Metric for Improved Branch Classification Analysis
نویسندگان
چکیده
Recent studies have shown significantly improved branch prediction through the use of branch classification. By separating static branches into groups, or classes, with similar dynamic behavior, predictors may be selected that are best suited for each class. Previous methods have classified branches according to taken rate (or bias). We propose a new metric for branch classification: branch transition rate, which is defined as the number of times a branch changes direction between taken and not taken during execution. We show that transition rate is a more appropriate indicator of branch behavior than taken rate for determining predictor performance. When both metrics are combined, an even clearer picture of dynamic branch behavior emerges, in which expected predictor performance for a branch is closely correlated with its combined taken and transition rate class. Using this classification, a small group of branches is identified for which two-level predictors are ineffective.
منابع مشابه
$C$-class and $F(psi,varphi)$-contractions on $M$-metric spaces
Partial metric spaces were introduced by Matthews in 1994 as a part of the study of denotational semantics of data flow networks. In 2014 Asadi and {it et al.} [New Extension of $p$-Metric Spaces with Some fixed point Results on $M$-metric paces, J. Ineq. Appl. 2014 (2014): 18] extend the Partial metric spaces to $M$-metric spaces. In this work, we introduce the class of $F(psi,varphi)$-contrac...
متن کاملPhoneme Classification Using Temporal Tracking of Speech Clusters in Spectro-temporal Domain
This article presents a new feature extraction technique based on the temporal tracking of clusters in spectro-temporal features space. In the proposed method, auditory cortical outputs were clustered. The attributes of speech clusters were extracted as secondary features. However, the shape and position of speech clusters change during the time. The clusters temporally tracked and temporal tra...
متن کاملA New Method for Intrusion Detection Using Genetic Algorithm and Neural Network
The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...
متن کاملA New Method for Intrusion Detection Using Genetic Algorithm and Neural Network
The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...
متن کاملFuzzy Data Envelopment Analysis for Classification of Streaming Data
The classification of fuzzy uncertain data is considered one of the most challenging issues in data analysis. In spite of the significance of fuzzy data in mathematical programming, the development of the analytical methods of fuzzy data is slow. Therefore, the current study proposes a new fuzzy data classification method based on fuzzy data envelopment analysis (DEA) which can handle strea...
متن کامل